

A multicentre Phase I clinical trial demonstrates manufacturing feasibility, safety and activity of novel humanized BCMA-directed CAR-T cell therapy.

Manju Sengar¹, Aalia Khan², Athira Karuppa², Devyani Kalra², Smriti Ravikumar², Aalia Khan³, Anand Vaibhaw², Rohit Behere², Shraddha Dhamale², Poornam Rathore², Supriya More², Anjali Jaiswal², Manivasagam Sundaram², Prachi Salanke², Shrawanhan Rajopadhye², Amrita Tunge², Mounika Basu², Shruthi Shah², Afreen Farifay², Jyoti Pendharkar², Pranali Patil², Sushant Kumar², Girish Badarkhe⁴, Hemashth Jain¹, Rahul Purwar³

¹ Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Mumbai, India, ² Immunoadoptive Cell Therapy Private Limited (ImmunoACT), Mumbai, India, ³ Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India, ⁴ SMBT Charitable Hospital, Nashik, India

BACKGROUND

- hBCMA - a humanized anti-BCMA next-generation CAR-T design demonstrated strong target-binding affinity, potent anti-tumor activity, and an acceptable safety profile in preclinical studies (Khan et al., ASH 2024).
- The first-in-human Phase I/II clinical trials to evaluate hBCMA as a safe and effective therapeutic option for relapsed/refractory multiple myeloma (rrMM) were initiated (CTRI/2025/01/079364).
- Here, we report the manufacturing feasibility and safety in Phase I clinical study and early activity of hBCMA.

OBJECTIVES

- To evaluate the assess safety by determining the incidence of adverse events and dose-limiting toxicities (DLTs) was of hBCMA for rrMM.
- Determine persistence and quantification of hBCMA cells.
- To determine overall response rate and survival outcomes
- To assess the durability of response (DOR)

CONCLUSION

- hBCMA showed complete absence of neurotoxicity (any grade) and minimal incidence of Grade III/IV CRS in Phase I dose escalation study
- hBCMA CAR-T cells were successfully manufactured for all patients (100% MSR) with robust expansion and persistence *in vivo*.
- Low doses of hBCMA demonstrated significant anti-tumor activity with responses lasting beyond 6 months in heavily pretreated patients.

METHODS

Multicenter, Non-randomized, single arm Phase I/II study

Key eligibility criteria:

- Relapsed/Refractory MM, ≥18 years
- Failed ≥ 2 lines or double refractory to IMiD* and PI#
- Measurable residual disease

Phase I objective (Safety):

- Maximum tolerated Dose (MTD) -RP2D
- Adverse events of interest
- Dose limiting toxicity (DLT) (3+3 design)

Dose levels\$:

- DL 1 : 0.5 – 2 × 10⁶ CAR-T cells/kg
- DL 2 : 2 – 5 × 10⁶ CAR-T cells/kg
- DL 3 : 5 – 10 × 10⁶ CAR-T cells/kg

Phase II objective (Efficacy):

- ORR at Month 3, MRD assessment
- Progression free survival (PFS), Overall survival (OS)
- N = 45

1- 8 week
1- 2 week
d-5 to d-3
d0
Follow up assessments for safety and efficacy

Vitals, CBC, BC, SE : baseline, daily upto d7, weekly upto d28, monthly upto M12 (1 year), 3 monthly upto M24 (2 years), 6 monthly upto M60 (5 years)

MRD BM assessment, PET/CT or MRI : baseline, d28, M3

Serum quantitative free light chains: baseline, d28, M3, three monthly upto M24 (2 years), six monthly upto M60 (5 years)

RESULTS

Patient baseline characteristics

Characteristics	DL 1 (n=3)	DL 2 (n=3)
Sex		
Male	1 (33%)	2 (67%)
Female	2 (67%)	1 (33%)
Age (in years)		
Median (range)	59 (54-65)	54 (53-64)
ECOG PS		
0-1	3 (100%)	3 (100%)
Extramedullary disease	0 (0%)	0 (0%)
Refractory status		
Triple refractory ^a	1 (33%)	0 (0%)
Penta refractory ^b	2 (67%)	3 (100%)
Prior therapy		
Lenalidomide	1 (33%)	3 (100%)
Pomalidomide	3 (100%)	3 (100%)
Thalidomide	3 (100%)	2 (67%)
Bortezomib	3 (100%)	3 (100%)
Carfilzomib	2 (67%)	1 (33%)
Daratumumab	2 (67%)	2 (67%)
Dexamethasone	3 (100%)	3 (100%)
Prior ASCT	1 (33%)	3 (100%)
Bridging therapy	2 (67%)	0 (0%)

^a Triple refractory defined as refractory to ≥ 01 immuno-modulatory drug, ≥ 01 proteasome inhibitor, and ≥ 01 anti-CD38 monoclonal antibody

^b Penta refractory defined as refractory to ≥ 02 immuno-modulatory drugs, ≥ 02 proteasome inhibitors, and ≥ 01 anti-CD38 monoclonal antibody

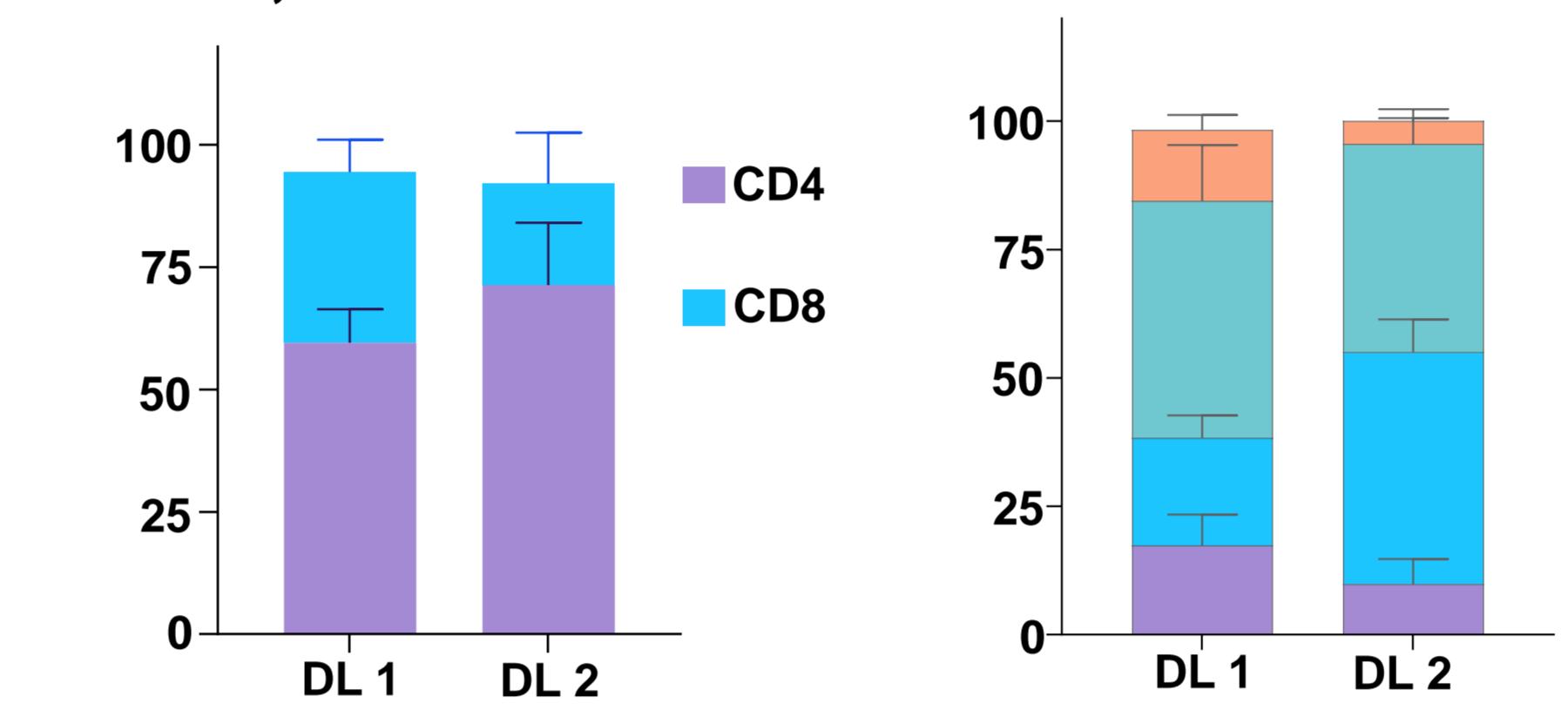
Manufacturing Feasibility

Characteristics	DL 1 (n=3)	DL 2 (n=3)
Manufacturing success rate (MSR)	3/3 (100%)	3/3 (100%)
Production cycle, days		
Median (range)	6 (6-8)	7 (6-7)
Fold expansion		
Median (range)	0.94 (0.78-1.81)	0.99 (0.85-2.08)
Transduction efficiency, %		
Median (range)	42 (19-45)	41 (40-52)
Vein to Vein time, days		
Median (range)	26 (19-36)	26 (25-32)

References:

- Khan, Aalia N., et al. Blood 144 (2024): 4809.
- IPA no. 202421019457, PCT/IB2025/052672.

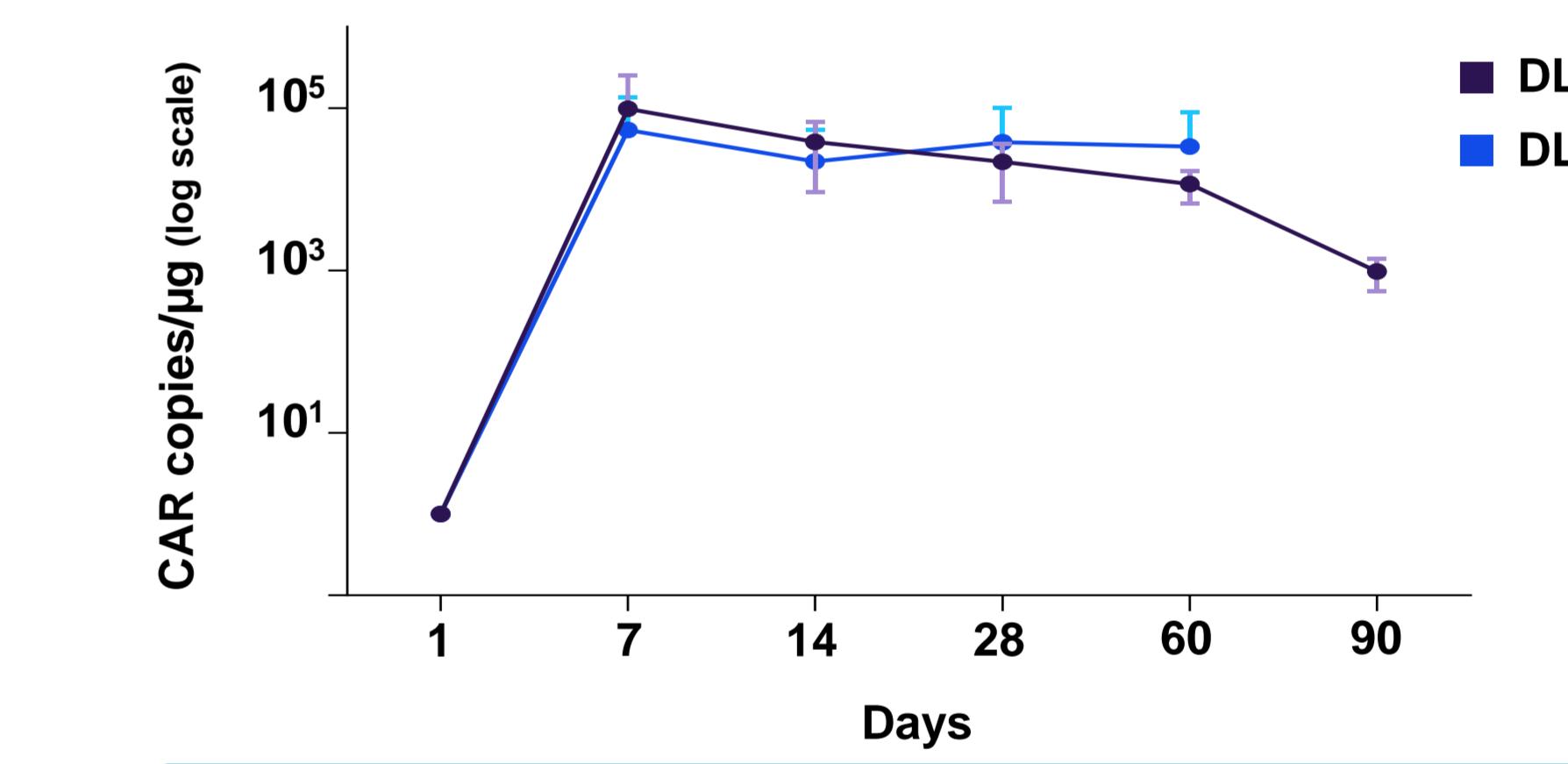
Contact:

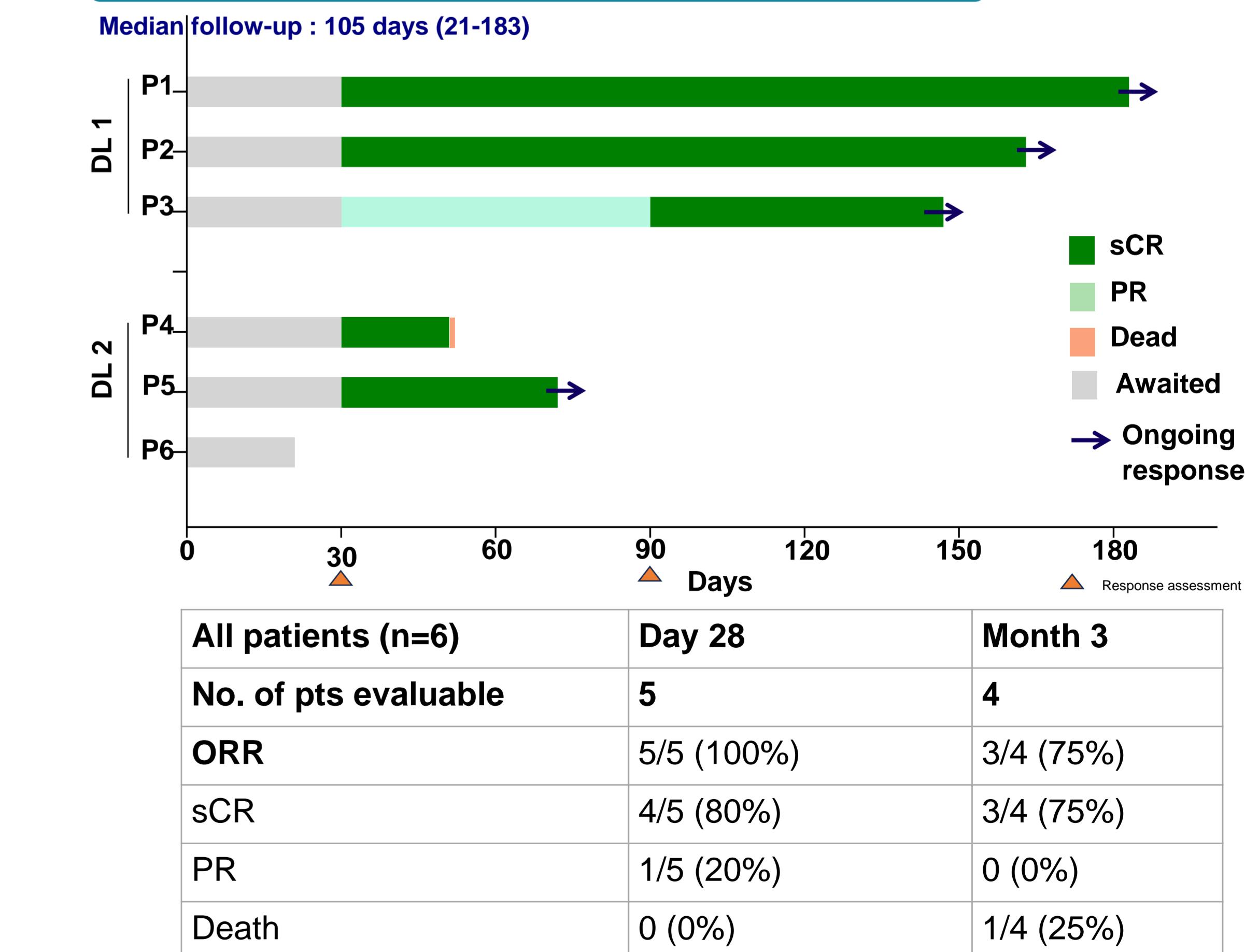

- Dr. Manju Sengar ; manju.sengar@gmail.com
- Dr. Rahul Purwar ; rahul.purwar@immunoact.com

Acknowledgements:

On behalf of all the authors, we would like to thank the patients, study investigators, and site personnel for their participation in this study.

hBCMA product characteristics


CD4,CD8 distribution


HRU for toxicity management

	All patients (n=6)	DL1 (n=3)	DL2 (n=3)
Hospitalization			
Median (range), days	9 (7-29)	8 (7-8)	13 (9-29)
ICU admissions	3 (50%)	2 (67%)	1 (33%)
ICU Median (range), days	4 (1-7)	4 (1-7)	4 (4)
Drugs for AEs management			
Tocilizumab	5 (83%)	2 (67%)	3 (100%)
Anakinra	3 (50%)	1 (33%)	2 (67%)
Ruxolitinib	2 (33%)	2 (67%)	0 (0%)
IVIG	6 (100%)	3 (100%)	3 (100%)

hBCMA *in vivo* expansion and persistence

hBCMA Efficacy

Abstract #4153

ASH 2025

Orlando, FL.